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Review
Adaptive immunity is predicated on the ability of the T cell
repertoire to have pre-existing specificity for the universe
of potential pathogens. Recent findings suggest that T cell
receptor (TCR)–self-major histocompatibility protein
(pMHC) interactions limit autoimmune responses while
enhancing T cell response to foreign antigens. We review
these findings here, placing them in context of the current
understanding of how TCR–self-pMHC interactions regu-
late T cell activation thresholds, and suggest that
TCR–self-pMHC interactions increase the efficiency of
the T cell repertoire by giving a competitive advantage
to peptide cross-reactive T cells. We propose that self-
reactivity and peptide cross-reactivity are controlled by
particular CDR3 sequence motifs, which would allow
thymic selection to contribute to solving the feat of broad
pathogen specificity by exporting T cells that are pre-
screened by positive and negative selection for the ability
to be ‘moderately’ peptide cross-reactive.

T cell selectivity and ligand discrimination
To initiate an adaptive immune response, T cells scan
antigen-presenting cells (APC) within the secondary lym-
phoid compartments for pathogen-derived peptides dis-
played on host pMHC. If a T cell–APC encounter results
in intracellular signals that exceed a threshold, naı̈ve T
cells are triggered to undergo activation, clonal expansion,
and acquire effector cell functions that help orchestrate
pathogen clearance [1]. Three antigen-recognition proper-
ties are sentinel to the ability of the T cell repertoire to
create sterilizing immunity. First, individual T cell clono-
types need to be responsive to a limited set of peptides
displayed by host MHC. Second, to provide broad immu-
nological coverage to the plethora of yet-to-be-seen patho-
gens, the collective T cell repertoire is required to have
immense specificity for any and all of the unknown patho-
gens that might invade the host. Third, the T cell repertoire
has to accomplish these feats of specificity and broad
pathogen coverage using only several million T cell clono-
types [2–4].

Selective pressures that arise during T cell development
contribute to solving these feats of antigen specificity using
a ‘goldilocks’ solution. TCR V(D)J somatic gene rearrange-
ment creates sequence diversity at positions of the TCR
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CDR3 loops that directly engage pMHC, which gives rise to
T cell clonotypes that have their own unique peptide
specificity requirements [5]. T cell selection then seeds
the mature repertoire with a few million unique T cell
clonotypes that express only those TCRs that have a
‘moderate’ range of peptide cross-reactivity; TCRs that
require the engagement of multiple side chains of the
peptide to create a strong enough binding reaction to
induce T cell activation [6,7]. The structural features that
allow post-selection TCRs to be self-tolerant and engage
only a limited set of peptides include the pairing of partic-
ular TCR V gene combinations with specific CDR3
sequences, as well as through the creation of TCRa to
TCRb interchain interactions that stabilize CDR3 loop
conformations [8–10]. Whether there are generalizable
structural or sequence feature of CDR3 loops that predis-
pose TCRs to be self-reactive or control the rate of peptide
cross-reactivity is poorly understood. The multiplicative
effect of millions of T cell clonotypes specific for unique sets
of similar (and sometimes dissimilar) peptides, allows
the T cell repertoire to have broad pathogen specificity
while still limiting dysregulated autoimmune responses
[4,11–13].

The actual ‘rate’ of peptide cross-reactivity and, thus,
the likelihood that a given T cell clonotype will enter into
an immune response, is a product of the ligand-binding
properties of the expressed TCR, the density in which the
antigen is expressed, as well as T cell signaling thresholds.
The signaling threshold for T cell activation is based on the
quality and quantity of TCR interactions with pMHC
displayed on APC, and is tunable based on TCR–self-
pMHC interactions that occur during development and
homeostasis. The ability to select the expressed TCRs
and tune the threshold of T cell signaling ensures that a
minimum but limited number of T cell clonotypes will
respond to any given infection, providing T cell immunity
while minimizing detrimental immune and autoimmune
responses [14]. A number of recent findings have begun to
shed light on how T cell signaling thresholds are set.

Setting TCR signaling thresholds
The consensus model of T cell ligand discrimination is
based on the concept of kinetic proofreading [15,16]. That
is, the commencement of TCR signaling is not instanta-
neous following TCR engagement with pMHC, and
requires the TCR to be bound for a period of time to allow
the initiation of productive signaling (Box 1). The first step
in this process requires TCR engagement of pMHC to
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Box 1. T cell activation: affinity, dwell time, and force

A number of models have been proposed to explain the potency of

pMHC ligands to induce T cell activation. T cells can only measure

three parameters of the TCR–pMHC binding event: the number of

TCRs engaged with a pMHC complex at any one time, the length of

time in which each receptor is bound, and the amount of force

applied to the TCR–pMHC binding event. The number of TCR

simultaneously engaged with a pMHC is dependent upon the

equilibrium affinity (KD) of the TCR–pMHC interaction and the

concentration of pMHC being presented. Evidence supporting

KD-based receptor occupancy models of TCR signaling comes from

studies showing a correlation between KD and ligand potency

[75,76], and from the fact that ligands can induce qualitatively

distinct biological outcomes depending upon their concentration

[77]. Kinetic proofreading models hypothesize that TCR must be

engaged long enough to complete a series of signaling events,

including co-receptor recruitment and TCR phosphorylation [15]. In-

creases in the dwell time of the TCR–pMHC engagement raise the

probability that any single TCR–pMHC engagement will surpass the

threshold amount of time required to initiate T cell activation and

undergo clonal expansion [16,78]. More recently, the force that

pMHC can apply to the TCR has been correlated with T cell

activation [79]. Stronger TCR–pMHC binding events can stay bound

for longer periods of time, allowing an accumulation of force to be

applied to the TCR [80,81]. The application of force may induce TCR

constant domains to undergo allosteric conformational changes,

allowing interactions with the extracellular portion of CD3 compo-

nents to initiate the release of CD3 and TCRz cytoplasmic domains

from the plasma membrane [82–85]. Given that affinity, dwell-time,

and force are not independent parameters, how the interplay of

these variables allows for distinct biological outcomes, including

positive selection, T cell homeostasis, and T cell antagonism, as well

all clonal expansion and T cell exhaustion, remains a work in

progress.

Box 2. Transmitting TCR signals across the cell membrane

Several nonmutually exclusive models have been proposed to

explain how TCR engagement allows signals to be transmitted across

the cell membrane, eventually resulting in the phosphorylation of the

CD3e and TCRz cytoplasmic domains. Under nonactivating condi-

tions, the CD3e and TCRz cytoplasmic domains of the T cell receptor

complex are thought to bind to the inner leaflet of the plasma

membrane, resulting in the insertion of the aromatic tyrosine in the

ITAMs to be buried within the plasma membrane [86,87]. This

sequestration of the ITAM, mediated by electrostatic interactions

between acidic phospholipids and clusters of basic residues within

the CD3e and TCRz cytoplasmic domains, may limit spurious

phosphorylation of the TCR complex in the absence of pMHC binding

[88]. When TCR engage agonist pMHC ligands, a mechanical shear

force is applied to the TCR, due to the dynamic movement of these

proteins bound to cell membranes. The force exerted on the TCR is

thought to induce allosteric conformational changes within the

constant domains, including changes to the A-B loop within the

TCRa chain, as well as conformational changes within the F-G loop of

the TCRb chain, allowing the TCR constant domains to change their

interactions with CD3eg heterodimer [79–85]. Within the cytosol,

mechanical forces on the TCR, TCR multimerization, and/or changes

in the local environment may induce CD3e and z cytoplasmic domains

to be to be released from the plasma membrane, allowing the

associated ITAM to be accessible for phosphorylation

[86,89]. Changes in the charge property of lipids have also been

ascribed to increases in the Ca2+ concentration [90]; however, the

exact mechanisms involved are still incomplete because it has been

noted that other divalent cations are able to induce this release of

ITAMs, and that the magnesium concentrations in the cell far exceed

the concentrations of free calcium [17]. Contrary to the idea that

ITAMs need to first be released from the plasma membrane, it has

also been suggested that the phosphorylation of TCRz by Lck induces

the dissociation of the TCRz chain from the plasma membrane, which

then facilitates TCR–CD3 clustering required for full T cell activation

[88]. These and other models and pathways not discussed here,

indicate that although many details of TCR signaling are known, the

question of ‘How does T cell receptor signaling begin?’ is still not fully

understood [17,18].
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result in the phosphorylation of TCR associated ITAM-
containing TCRz and CD3 chains by the Src family kinase,
Lck [17]. How TCR signals are transmitted across the cell
membrane is an area of intense research (Box 2).

Within the cytoplasm of T cells, the ability of the TCR
complex to transduce activating signals stems from com-
peting phosphorylation and dephosphorylation reactions.
The T cell co-receptors, CD4 and CD8, are critical to this
process because they enhance TCR signaling by delivering
the Src family kinase Lck to pMHC-bound TCRs, and
for CD8, through stabilizing the TCR–pMHC interaction
[17–19]. The phosphorylation status of Lck itself deter-
mines whether the kinase has enzymatic function. Lck has
two major tyrosine phosphorylation regulatory sites.
Tyr394, which when phosphorylated by trans-autopho-
sphorylation or by Fyn, the other Src kinase, stabilize
the active conformation. By contrast, the phosphorylation
of Lck Tyr505 in the absence of phosphorylated Tyr394,
promotes the inactive, auto-inhibited conformation of Lck.
In unperturbed T cells and thymocytes, a basal level of
active Lck is maintained. When the active form of Lck is
recruited to the TCR complex, it initially phosphorylates
the two tyrosines within the CD3 and TCRz-chain ITAMs.
Doubly phosphorylated TCRz-chain ITAMs recruit ZAP70,
a kinase that is subsequently activated by a second round
of Lck-mediated phosphorylation, which then relays the
signal downstream by phosphorylating LAT and SLP76
(thoroughly reviewed in [17,20]).

The signal activation cascade that occurs when the TCR
engages strongly activating ligands results in the increase
in intracellular Ca2+, activation of the Carma1/Bcl10/
338
Malt1 (CBM) and Ras-ERK pathways. Consequently
NFAT and NF-kB translocate to the nucleus and AP-1
becomes phosphorylated to induce gene transcription.
Competitive to the activating signal are phosphatases,
such as CD45, SHP-1, and PTPN22, which dephosphory-
late Lck at Tyr394, ZAP-70, Lat, SLP-76, and Vav1, as well
as kinases such as CSK, which phosphorylates Lck at
Tyr505 [17,21]. Weak TCR–pMHC binding events are
thought to trigger a negative feedback loop leading to rapid
recruitment of the phosphatase SHP-1, followed by recep-
tor desensitization, through the inactivation of Lck kinase
and through a still being defined THEMIS:GRB2:SHP1
complex [21–24].

Creating an ‘autoimmunity buffer’
Mature T cells have tremendous selectivity; T cell activat-
ing signals can be generated from as few as one to ten
pMHC ligands within the T cell–APC contact area
[25,26]. These findings raise a specificity conundrum. If
thymocytes can, and indeed are required by positive selec-
tion, to functionally engage as few one to ten self-pMHC
complexes, why does the mature T cell repertoire not
chronically induce fulminant autoimmunity?

Part of the answer to this riddle was observed 25 years
ago by Yagi and Janeway, who showed that developing
thymocytes are 30–100 times more sensitive to antigen
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than mature T cells [27]. These early experiments using
superantigens were followed up using TCR transgenic
mice and sets of altered peptide ligands (APLs) to show
that mature T cells become desensitized to both ligand
potency and ligand density [28–30]. Allowing thymocytes
to undergo positive selection on very weak ligands as well
as somewhat stronger ligands ensures that the subsequent
T cell repertoire has a range of self-pMHC reactivity
profiles. The ability of thymocytes to incorporate different
strengths of self-pMHC signals appears to be critical for T
cells to differentiate into distinct T cell lineages. Selection
of conventional naı̈ve T cells requires the least amount of
signaling derived from self-pMHC to undergo positive
selection and be maintained through homeostasis. By
contrast, anti-inflammatory regulatory T cells, unconven-
tional innate-like T cells, including NKT cells and CD8aa

IELs are thought to require stronger signals derived be
selected on stronger ‘agonist’ self-pMHC complexes [31].

The desensitization of mature T cells creates an ‘autoim-
munity buffer’ that may be critical to avoid autoimmunity.
For thymocytes to undergo positive selection and be
exported into the mature T cell repertoire, the TCR–self-
pMHC binding event has to propagate TCR signal trans-
duction. The TCR–pMHC potency or dwell time threshold
that separates positive selection from negative selection is
quite narrow [19,32]. Without T cell signaling desensitiza-
tion, the narrow window between positive and negative
selection could pose great risk for the development of auto-
immunity. This would be particularly true for autoreactive T
cells that express self-reactive TCRs that are near the
threshold for negative selection [33], target antigens that
are expressed at much higher levels in the peripheral tissues
as compared to the thymus (such as myelin), or target self-
antigens that have temporal expression patterns [34]. How-
ever, based on in vitro assays, T cell signaling desensitiza-
tion ensures that a self-pMHC ligand would need to be
presented minimally at a 30–100-fold greater density in a
peripheral tissue, as compared to the thymus, for a T cell to
avoid negative selection and cause autoimmunity [27–30].

Difference in TCR signaling thresholds and pathways
between thymocytes and mature T cells arise from both
developmentally programmed changes and through dy-
namic tuning of T cell signal thresholds. Developmentally
programmed changes include the differential expression of
miRNAs, short noncoding RNAs that alter gene expression
by targeting specific mRNA molecules for degradation or
translational repression. The expression of miR-181a, for
example, correlates with changes in ligand sensitivity
because it is highly expressed in pre-selection thymocytes
and is downregulated following TCR signaling and differ-
entiation into mature T cells [35]. miR-181a amplifies TCR
signaling by repressing multiple negative regulators in the
TCR signaling pathway, including nonreceptor-type tyro-
sine phosphatase SHP-2, PTPN22, and the ERK-specific
phosphatases, dual specificity phosphatases (DUSP5 and
DUSP6). Repression of miR-181a targets is required for
proper thymocyte positive and negative selection in vitro,
due to altered TCR-signaling thresholds, while the inhibi-
tion of miR-181a results in the development of mature
T cells that are overtly self-reactive [36]. Analysis and
interpretation of deficiency of the entire miR-181 family
is somewhat complicated: the miR-181 family is composed
of six mature miRNAs that are encoded in three indepen-
dent paralog precursor transcripts on three separate chro-
mosomes, and is a critical regulator of cellular metabolism
[37].

Developmentally programmed changes in TCR signal-
ing also arise from the differential expression of T cell
signaling molecules. This has been documented for the
signal transduction cascade leading to NF-kB activation:
while thymocytes mature by and large normally in animals
deficient in PKCu, Carma1, Bcl10, or Malt1, peripheral T
cells carrying these deficiencies are unable to respond
to strong TCR stimuli, indicating that positive and nega-
tive thymocyte selection minimally involve the CBM
complex that is necessary for peripheral responsiveness
[38–41]. Conversely, the adaptor molecules, thymocyte-
expressed positive selection-associated-1 (Tespa1), and
thymocyte-expressed molecule involved in selection
(Themis) and a voltage-gated Na+ channel (VGSC) are
highly expressed in double negative and immature TCRlo

DP thymocytes, and their expression levels are reduced or
absent in mature single positive thymocytes and in mature
T cells [42–47]. The expression of both Tespa1 and VGSC
provides mechanisms that allow weak positive selection
signals to induce sustained Ca2+ signals that are required
for CD4+ T cell development [47,48]. Themis, however, is
thought to be a negative regulator of TCR signaling, based
on the observation that Themis-deficient thymocytes re-
spond to positively selecting self-pMHC in a fashion simi-
lar to that observed in wild type thymocytes interacting
with higher-affinity ligands and from observations that the
expression of Themis desensitizes TCR-signaling in
mature T cells [24,42]. Thus, the developmental changes
in TCR signaling thresholds are a product of differentially
expressed positive and negative regulators of signaling,
the balance of which is required to allow T cells to be less
sensitive to self-pMHC ligands presented in the periphery,
as well as to allow T cells to develop into different lineages.

Dynamic tuning of TCR sensitivity is initially set during
T cell selection and continues to occur during mature T cell
homeostasis. During development, the expression level of
negative regulators of TCR signaling can be adjusted
following thymocyte interactions with endogenous self-
pMHC to fine-tune the TCR signaling sensitivity of mature
T cells. For example, T cells that more strongly recognize
self-pMHC increase the expression of CD5, a cell surface
molecule that can negatively regulate TCR signals through
association with the phosphatase SHP-1, whereas T cells
that have weak interactions with self-pMHC express lower
levels of CD5 [12,14,31,49–51]. Dynamic tuning of TCR
sensitivity continues to occur postselection. During homeo-
stasis, T cell interactions with self-pMHC can regulate the
expression of negative regulatory molecules, influence
cytokine responsiveness and limit autoimmune responses
[14,52–54]. However, it is clear that T cell interactions with
self-pMHC do not solely result in limiting T cell reactivity.
Continuous TCR–self-pMHC interactions are required for
proper lymphocyte homeostasis, and to maintain the effec-
tor functions. These processes ensure that peripheral
T cells remain capable of recognizing peptides displayed
by host-MHC molecules [55]. Moreover, recent findings
339
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suggest that the quality (signal strength) of TCR–self-
pMHC interactions are important in determining the
response of a T cell to foreign antigens.

TCR–self-pMHC interactions prepare T cells for effector
responses
Once exported from the thymus, the naı̈ve T cell repertoire
continually interacts with self-pMHC ligands displayed on
APC. At the repertoire level, these TCR–self-pMHC inter-
actions are required for naı̈ve T cells to undergo homeo-
static proliferation, regulate cytokine responsiveness, and
endow T cells with a heightened sensitivity towards foreign
antigens through inducing partial phosphorylation of the
TCRz chain [31,55–58]. TCR–self-pMHC interactions are
also required for CD4+ FoxP3+ T cells to properly function,
through the regulation of mTOR signaling and the expres-
sion of, among others, IRF4 and CTLA-4 [59,60].

It has been evident since the earliest experiments that
individual naı̈ve T cell clonotypes likely interpret self-
pMHC interactions differently. By transferring polyclonal
T cell populations into lymphopenic hosts, it was observed
that some naı̈ve T cells failed to undergo homeostatic
proliferation. Similar studies using monoclonal and poly-
clonal T cell populations demonstrated that the capacity of
self-pMHC ligands to regulate T cell homeostasis is clono-
type specific and that the peripheral expression of ligands
that induce T cell positive selection can provide T cell
homeostatic signals [55,61,62]. Likewise, competition
among CD4+ T cells in unmanipulated hosts is probably
caused by the limited availability of particular self-pMHC
complexes [63]. However, deciphering this heterogeneity in
naı̈ve T cell reactivity to self-pMHC is intrinsically chal-
lenging; the interaction of self-pMHC complexes with the
clone-specific TCR is of very low affinity and only a few self-
peptides have been identified that induce positive selection
of T cells or affect on peripheral T cell function.

Whether TCR–self-pMHC signal strength, and not sim-
ply the presence or absence of a positively selecting ligand,
regulates naı̈ve T cell survival and function has been
addressed by overexpressing positively selecting ligands
and through the use of TCR signaling reporters and sur-
rogates. Allen and colleagues have recently provided direct
evidence using gp250, a self-peptide that induces the posi-
tive selection of AND TCR transgenic T cells, that the
expression level of a positively selecting ligand influences
the frequency at which T cells with a particular specificity
undergo positive selection, as well as the frequency in
which these T cells are present in the mature T cell
repertoire [64,65]. Experiments using reporters of TCR
signaling further support the model that the quality of
the TCR signals generated by self-pMHC regulates T cell
function. Of particular value is the expression of CD5,
which may function as a rheostat to weaken or strengthen
TCR signaling [12,31,50,51,66]. Paradoxically, increasing
levels of CD5, which one might expect to reduce TCR
signals, positively correlate with the degree of basal phos-
phorylation of TCRz and, following TCR stimulation, the
rapid induction of Erk phosphorylation and production of
IL-2 [67,68]. Consistent with these findings, CD5hi CD4+

and CD8+ T cells express higher levels of GFP than do
CD5lo naı̈ve T cells in TCR signaling reporter Nurr77-gfp
340
mice. Naı̈ve CD5hi T cells also show increased expression of
multiple genes involved in T cell activations, including
Eomes, T-bet, Helios, and Id3 [69]. These functional and
transcriptional changes have led several groups to test the
hypothesis that responses to foreign antigens may be
influenced by the quality of the interactions of a T cell
clonotype with self-pMHC complexes.

Self-pMHC reactivity biases increase the efficiency of
T cell responses
By co-transferring polyclonal CD5hi and CD5lo T cells into
recipient mice, the groups of Germain and Jameson have
recently demonstrated that polyclonal CD5hi CD4 and
CD5hi CD8 T cells, respectively, outcompete CD5lo T cells
in primary responses to multiple pathogen challenges. For
CD8 T cells, the immunodominance of CD5hi T cells was
maintained at the memory phase and during recall
responses. The immunodominance of CD5hi T cells appears
not to be due to a greater intrinsic ability of these T cells to
undergo TCR-induced proliferation, because both CD5lo

and CD5hi T cells proliferate similarly to in vitro activation
using a-CD3 and a-CD28 [67,69]. Although there is a
strong consensus regarding the increased basal TCR
signaling and improved functional characteristics, clonal
analyses of the CD5hi versus CD5lo T cell subsets suggests
the mechanisms that underlie differences in the T cell
response during pathogen challenge are diverse. Using
pMHC tetramer staining as a measure of TCR-pMHC bind-
ing strength, Mandl et al. argue that CD5hi T cells express
TCRs that are intrinsically of higher affinity for both self-
peptides and foreign peptides, and that this higher affinity
for foreign peptides gives these T cells a competitive advan-
tage during clonal expansion [67]. Alternative to this
TCR-intrinsic affinity model, Fulton et al. suggest a
T cell-intrinsic model in which increasing strength of
TCR–self-pMHC interactions more efficiently poise naı̈ve
T cells to proliferate and integrate pro-inflammatory signals
following pathogen challenge [69]. These findings are some-
what of a paradox to the idea that strong T cell interactions
with self-pMHC dampen T cell reactivity and limit autoim-
munity [52]. It is possible, however, that the different
experimental approaches elucidated different aspects of
peripheral T cell interactions with self-pMHC; stronger
subthreshold interactions with self-pMHC enhance T cell
responses until the threshold is met and receptor desensiti-
zation, anergy, and deletion occur.

The complexities of immune responses and the impor-
tance of maintaining T cell diversity suggest that the
response of individual T cell clonotypes to pathogen
challenge diverge from the general features of the poly-
clonal repertoire. Indeed, study of two CD4 T cells specific
for an identical epitope from Listeria monocytogenes
(LLO190–205), in which one is CD5hi and the other is CD5lo,
demonstrated that the CD5lo clonotype undergoes greater
clonal expansion during a primary immune response. This
occurred despite the two TCR having near-identical affini-
ties for the IAb-LLO peptide complex and the CD5hi

clonotype having increased basal levels of phosphorylated
TCRz and ERK [68,70]. Immune response dynamics and
functional heterogeneity likely reconcile these differences.
Consistent with all of the models of CD5 expression, the



Box 3. Ensuring immunological diversity

Effective immune responses occur when polyclonal T cells target the

invading pathogen. However, during immune responses, there is a

competitive advantage for T cells with a strong reactivity for the

pathogen over T cells with a weak reactivity for the pathogen. Thus, T

cell competition based on antigen reactivity could result in the entire

immune response being dominated by progeny of just a few T cell

clones. Although a focused T cell response may initially be successful

in attacking cells harboring the invader, pathogens often have the

ability to escape narrow oligoclonal T cell response through clonal

exhaustion or through deleterious mutations within the T cell epitope

[91–95]. To limit these effects, several additional layers of T cell

competition ensure clonal diversity of the overall naı̈ve T cell

repertoire, as well as during immune responses [96]. During home-

ostasis, the mature T cell repertoire is subject to intraclonal

competition, likely for access to self-pMHC ligands presented by

APC and cytokines that provide survival signals [53,55]. This form of

competition ensures that there are relatively few numbers of any

individual clonotype, allowing the space for a large number of unique

T cell clonotypes to exist [4]. During immune responses, T cell

intrinsic and extrinsic mechanisms limit oligoclonality and ensure

individual clones do not overly dominate the T cell response during

the priming phase. These include co-inhibitory molecules, such as

CTLA4, selective apoptosis of T cell clonotypes, and T cell competition

[21,68,97,98]. Intrinsic T cell signaling, T cell competition for self-

ligands, and cytokines further impacts the transition from activated to

memory T cell formation [99].
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CD5hi T cells produced greater IL-2 responses following
antigenic and nonspecific stimulation, arguing there are
intrinsic differences in the responsiveness of the two T cell
lines to antigen receptor stimulation. Although this might
portend the CD5hi T cells to undergo greater clonal expan-
sion, the CD5hi T cells in fact showed a greater disposition to
undergo apoptosis, potentially through IL-2-mediated
activation-induced cell death. Nevertheless, some of the
CD5hi T cells were maintained and indeed dominated the
immune response during a secondary challenge. Thus, dur-
ing polyclonal T cell response to pathogens, the immune
system has multiple mechanisms in place to limit clonal
dominance and maintain immunological diversity (Box 3).

Concluding remarks
How might self-pMHC reactivity benefit the efficiency of
the T cell repertoire? An effective adaptive immune system
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peptide cross-reactivity to outcompete more peptide-
specific T cells. These peripheral selection processes may
also underpin the limiting of T cell diversity in aged
individuals following thymic involution.

How might TCRs be created that have increased
frequencies of self-reactivity and peptide cross-reactivity?
TCR expressed on mature T cells are selected in part on
their ability to be peptide cross-reactive. To create TCRs
that have a beneficial range of peptide cross-reactivity,
thymic selection equips mature T cells with TCR that carry
structural features that allow TCRs to have ‘moderate
rates’ of peptide cross-reactivity [6]. Somatic gene recom-
bination creates TCR with variations in pMHC specificity
and rates of peptide cross-reactivity by pairing different
TCR Va and Vb gene segments with rearranged CDR3
V(D)J sequences, with the majority of TCR diversity and,
thus, control of ligand specificity arising from CDR3
sequences. Given that CDR3 sequences are the hot spot
of TCR diversity [5], we predict that the control of peptide
cross-reactivity will derived from these sequences. In
particular, we hypothesize that thymic selection equips
mature T cells with TCR that carry particular types of
amino acid at the tips of CDR3 loops that allow TCRs to
have ‘moderate rates’ of peptide cross-reactivity. Unique
CDR3 sequences may also create loops with greater or
lessor flexibility, regulating the number of peptide features
CDR3 residues can engage. Future experiments will be
needed to determine if CDR3 self-reactivity and peptide
cross-reactivity sequence motifs can be identified, and how
these recognition properties regulate the development of
inflammatory and anti-inflammatory T cells, as well as
immune and autoimmune T cell responses.
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